Preclinical Characterization of Vadadustat (AKB-6548), an Oral Small Molecule Hypoxia Inducible Factor Prolyl-4-Hydroxylase Inhibitor, for the Potential Treatment of Renal Anemia

A. Zuk, Z. Si, S. Loi, S. Bommegowda, S. Danthi, G. Molnar, M. Rabinowitz

Research and Development
Akebia Therapeutics
Cambridge, MA

PRESENTED AT ASN KIDNEY WEEK 2019
Disclosures

- The authors are employees of Akebia Therapeutics, which funded the studies

Disclaimers

- Vadadustat is an investigational drug. Vadadustat is not approved by the United States Food and Drug Administration or any regulatory authority.
Objective

- To summarize the preclinical pharmacological characterization of vadamustat
HIF and the prolyl-4-hydroxylase domain enzymes

Abbreviations:

O₂ = oxygen
PHD = prolyl-4-hydroxylase domain
HIF = hypoxia inducible factor
EPO = erythropoietin
Hb = hemoglobin
RBC = red blood cell
Vadadustat inhibits recombinant human PHD1, PHD2 and PHD3 at equivalent nanomolar concentrations*

*Measured by Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) Assay. Data represent Mean ± SD.

Abbreviations:
PHD = prolyl-4-hydroxylase domain
IC$_{50}$ = half maximal inhibitory concentration
pIC$_{50}$ = negative log of the IC$_{50}$ value in molar

<table>
<thead>
<tr>
<th></th>
<th>Mean (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC$_{50}$ value (nM)</td>
</tr>
<tr>
<td>PHD1</td>
<td>15.36 (11.96, 19.73)</td>
</tr>
<tr>
<td>PHD2</td>
<td>11.83 (8.20, 17.07)</td>
</tr>
<tr>
<td>PHD3</td>
<td>7.63 (7.21, 8.07)</td>
</tr>
</tbody>
</table>
Vadadustat-O-glucuronide inhibits recombinant human PHD2 at micromolar concentration*

*Measured by TR-FRET Assay. Data represent Mean ± SD.

<table>
<thead>
<tr>
<th></th>
<th>IC_{50} value (μM)</th>
<th>pIC_{50} value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (95% Confidence Interval)</td>
<td>2.31 (1.74, 3.08)</td>
<td>5.64 (5.51, 5.77)</td>
</tr>
</tbody>
</table>

Inhibition is approximately 200-fold less potent than the parent compound at the IC_{50}

Abbreviations:
PHD2 = prolyl-4-hydroxylase domain 2
IC_{50} = half maximal inhibitory concentration
pIC_{50} = negative log of the IC_{50} value in molar
Vadadustat is a competitive inhibitor of 2-oxoglutarate for recombinant human PHD2*

*Measured by TR-FRET Assay. Data represent Mean ± SD.

Abbreviations:
PHD2 = prolyl-4-hydroxylase domain 2
Vadadustat inhibition of recombinant human PHD2 is not sensitive to iron concentration in vitro*

*Measured by TR-FRET Assay. Data represent Mean ± SD.

<table>
<thead>
<tr>
<th>Vadadustat + 100 nM Fe²⁺</th>
<th>Vadadustat + 1 µM Fe²⁺</th>
<th>Vadadustat + 10 µM Fe²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC₅₀ (nM)</td>
<td>19.25 ± 5.74</td>
<td>3.91 ± 0.38</td>
</tr>
</tbody>
</table>

Abbreviations:
PHD2 = prolyl-4-hydroxylase domain 2
IC₅₀ = half maximal inhibitory concentration
Vadadustat was shown to stabilize both HIF-1α and HIF-2α in Hep3B and HUVEC cell lines in a dose and time dependent manner*.

Abbreviations:
HIF1α = hypoxia inducible factor-1 alpha
HIF2α = hypoxia inducible factor-2 alpha
Hep3B = human hepatocarcinoma cell line
HUVEC = human umbilical vein endothelial cell

*Measured by Mesoscale Discovery (MSD) Electrochemiluminescence Assay. HIF1α and HIF2α were normalized to total cellular protein (pg/µg). Data represent Mean ± SD.
Erythropoietin (EPO) secretion is increased in vitro after exposure of Hep3B cells to vadadustat*

*Measured by an Enzyme Linked ImmunoSorbent Assay (ELISA) after 24 hrs incubation. Data represent Mean ± SD. + P < 0.05 vs respective DMSO Control, Tukey’s Multiple Comparisons Test

Abbreviations:
DMSO = dimethylsulfoxide vehicle
EC$_{50}$ = half maximal effective concentration
Production of vascular endothelial growth factor (VEGF) was not observed to increase in vitro after exposure of Hep3B cells to vadadustat*

*Measured by Enzyme Linked ImmunoSorbent Assay (ELISA) after 24 hrs incubation. Data represent Mean ± SD. + P < 0.05 vs 0.1% DMSO, Tukey’s Multiple Comparisons Test.

Abbreviations:
DMSO = dimethylsulfoxide vehicle
Single-dose administration of vadalustat in rats was shown to increase the circulating levels of EPO in a time and dose dependent manner.*

*Measured by Enzyme Linked ImmunoSorbent Assay (ELISA). Data represent Mean ± SD.
Multi-dose exposure to vadadustat in mouse, rat and dog demonstrated increases in hemoglobin and hematocrit.

Duration of treatment of normal animals:
- Mouse = up to 6 months
- Rat = up to 2 years
- Dog = up to 9 months
In mouse, rat and dog, vadadustat had a relatively short half-life and did not accumulate after repeat dosing.

<table>
<thead>
<tr>
<th>Species</th>
<th>Dose Level (mg/kg)</th>
<th>Day</th>
<th>Gender Combined $T_{1/2}$ (h)</th>
<th>Gender Combined AUC$_{last}$ (µg*h/mL)</th>
<th>Accumulation Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>100</td>
<td>1</td>
<td>2.40</td>
<td>234</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56</td>
<td>1.90</td>
<td>197</td>
<td>0.84</td>
</tr>
<tr>
<td>Rat</td>
<td>120</td>
<td>1</td>
<td>2.09</td>
<td>993</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>2.05</td>
<td>902</td>
<td>0.90</td>
</tr>
<tr>
<td>Dog</td>
<td>120</td>
<td>1</td>
<td>2.86</td>
<td>740</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>3.59</td>
<td>776</td>
<td>1.05</td>
</tr>
</tbody>
</table>

NA = Not Applicable
Conclusions

• In the preclinical setting, vadadustat
 – inhibited recombinant human PHD1, PHD2 and PHD3 isoenzymes at equivalent nanomolar concentrations
 – stabilized both HIF-1α and HIF-2α in vitro
 – stimulated EPO production in vitro and in vivo
 – increased hemoglobin and hematocrit in multiple species
 – did not stimulate VEGF production in vitro

• The pharmacology of vadadustat support development for anemia of CKD and ESRD
Possible backup slides
Background and Mechanism of Action

Vadadustat is an orally bioavailable hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI) in development for the potential treatment of anemia due to chronic kidney disease.

The HIF-PH enzymes are also referred to as EGLN proteins or prolyl 4-hydroxylase domains (PHDs).

Pharmacological inhibition of PHD enzymes lead to the stabilization of hypoxia-inducible factor (HIF), a transcription factor that activates target genes to improve the O_2 carrying capacity of the blood.